ldcf.net
当前位置:首页 >> (1/sinx)积分 >>

(1/sinx)积分

(1/sinx)的结果为ln(csc(x)-cot(x)), 详细求解步骤如下: (1) 为计算方便记, 将(1/sin(x)) 记为 csc(x). (2) 其中 csc(x)=(csc(x)^2-csc(x)cot(x))/(csc(x)-cot(x)). (3) 令u=csc(x)-cot(x). (4) 1/u的积分即为ln(u). (5) csc(x)和cot(x)的积分即...

∫1/sinxdx =-∫1/sin²xd(cosx) 设t=cosx 得上式=∫1/(t²-1)dt =1/2∫[1/(t-1)-1/(t+1)]dt =1/2ln|(t-1)/(t+1)| 将t=cosx回代即可得答案

∫1/sinx dx =∫1/[2sin(x/2)cos(x/2)] dx,两倍角公式 =∫1/[sin(x/2)cos(x/2)] d(x/2) =∫1/tan(x/2)*sec²(x/2) d(x/2) =∫1/tan(x/2) d[tan(x/2)], [注∫sec²(x/2)d(x/2)=tan(x/2)+C] =ln|tan(x/2)|+C, (答案一) 进一步化简: =ln|sin(x/2...

先求不定积分 ∫1/sinx dx =∫sinx/sin²xdx =-∫1/sin²xdcosx =-∫1/(1-cos²x)dcosx =∫1/(cosx+1)(cosx-1)dcosx =∫[1/(cosx-1)-1/(cosx+1)]/2dcosx =[∫1/(cosx-1)dcosx-∫1/(cosx+1)dcosx]/2 =[∫1/(cosx-1)d(cosx-1)-∫1/(cosx+1)d(cos...

答案给你: ∫1/sinx dx+cosx =∫1/[2sin(x/2)cos(x/2)] dx+sinx =∫1/[sin(x/2)cos(x/2)] d(x/2)+sinx =∫1/tan(x/2)*sec²(x/2) d(x/2)+sinx =∫1/tan(x/2) d[tan(x/2)]+sinx =ln|tan(x/2)|+sinx+C 积分发展的动力来自于实际应用中的需求。实际...

解:分享一种解法。 将积分区间[0,2π]拆成[0,π/2)∪[π/2,π)∪[π,3π/2)∪[3π/2,2π),则∫(0,2π)dx/(2+sinx)=∫(0,π/2)dx/(2+sinx)+∫(π/2,π)dx/(2+sinx)+∫(π,3π/2)dx/(2+sinx)+∫(3π/2,2π)dx/(2+sinx),对后三个积分,分别设x=t+π/2、t+π、t+3π/2,则 ∴∫...

转换方法:

令u = tan(x / 2),dx = 2du / (1+u²) sinx = 2u / (1+u²),cosx = (1 - u²) / (1 + u²) ∫ dx / (sinx + cosx) = ∫ 2 / 【(1 + u²) * [2u / (1+u²) + (1 - u²) / (1 + u²)]】 du = 2∫ du / (-u² + 2...

令t=tan(x/2),则x=2arctant,所以dx=2/(1+t^2)dt 由万能公式:sinx=2tan(x/2)/(1+(tan(x/2))^2)=2t/(1+t^2), 则原式=(1/2)∫d(t+1/2)/[(t+1/2)^2+(根号3/2)^2] =(1/根号3)arctan[2(t+1/2)/根号3]+C =(1/根号3)arctan[2(arctan(x/2)+1/2)/根号3]+C

方法一: ∫[1/(1+sinx)]dx =2∫{1/[sin(x/2)+cos(x/2)]^2}d(x/2) =2∫{1/[tan(x/2)+1]}^2{1/[cos(x/2)]^2}d(x/2) =2∫{1/[tan(x/2)+1]}^2[tan(x/2)+1] =-2/[1+tan(x/2)]+C。 方法二: ∫[1/...

网站首页 | 网站地图
All rights reserved Powered by www.ldcf.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com