ldcf.net
当前位置:首页 >> (1/sinx)积分 >>

(1/sinx)积分

∫ 1/sinx dx = ∫ cscx dx = ∫ cscx * (cscx - cotx)/(cscx - cotx) dx = ∫ (- cscxcotx + csc²x)/(cscx - cotx) dx = ∫ d(cscx - cotx)/(cscx - cotx) = ln|cscx - cotx| + C 扩展资料 设F(x)是函数f(x)的一个原函数,函数f(x)的所有原函数...

答案是:-2/(tan(x/2) + 1)+C 方法一: ∫[1/(1+sinx)]dx =2∫{1/[sin(x/2)+cos(x/2)]^2}d(x/2) =2∫{1/[tan(x/2)+1]}^2{1/[cos(x/2)]^2}d(x/2) =2∫{1/[tan(x/2)+1]}^2[tan(x/2)+1] =-2/[1+tan...

∫1/sinxdx =-∫1/sin²xd(cosx) 设t=cosx 得上式=∫1/(t²-1)dt =1/2∫[1/(t-1)-1/(t+1)]dt =1/2ln|(t-1)/(t+1)| 将t=cosx回代即可得答案

令t=tan(x/2),则x=2arctant,所以dx=2/(1+t^2)dt 由万能公式:sinx=2tan(x/2)/(1+(tan(x/2))^2)=2t/(1+t^2), 则原式=(1/2)∫d(t+1/2)/[(t+1/2)^2+(根号3/2)^2] =(1/根号3)arctan[2(t+1/2)/根号3]+C =(1/根号3)arctan[2(arctan(x/2)+1/2)/根号3]+C

先求不定积分 ∫1/sinx dx =∫sinx/sin²xdx =-∫1/sin²xdcosx =-∫1/(1-cos²x)dcosx =∫1/(cosx+1)(cosx-1)dcosx =∫[1/(cosx-1)-1/(cosx+1)]/2dcosx =[∫1/(cosx-1)dcosx-∫1/(cosx+1)dcosx]/2 =[∫1/(cosx-1)d(cosx-1)-∫1/(cosx+1)d(cos...

∫[1/(1+sin²x)]dx=∫[1/(sin²x+cos²x+sin²x)]dx =∫[1/(cos²x+2sin²x)]dx =∫[1/(1+2tan²x)]*(1/cos²x)dx =∫[1/(1+2tan²x)]dtanx =(1/根号2)∫[1/(1+2tan²x)]d((根号2)*tanx) =(1/根号2)arctan((...

答案错了,正确答案:ln1+tan2/x的绝对值加c

∫1-(sinx)^3dx =x+∫(sinx)^2dcosx =x+∫(1-cosx^2)dcosx =x+cosx-(1/3)(cosx)^3 +C

发散,∞不是一个数,不能进行加减运算。。。。即使看起来好像是抵消了,但你只能证明它是不存在的,或者说ln0,本身就是无意义发散的,所以是发散的

网站首页 | 网站地图
All rights reserved Powered by www.ldcf.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com