ldcf.net
当前位置:首页 >> ∫(sinx+sin2x)/(1+Cosx的平方) >>

∫(sinx+sin2x)/(1+Cosx的平方)

∫sinx/(1+sin^2x)dx=-∫d(cosx)/[2-(cosx)^2] =-∫d(cosx)/(√2+cosx)(√2-cosx) =∫d(cosx)/(√2+cosx)(cosx-√2) =√2/4∫[1/(cosx-√2)-1/(cosx+√2)]dcosx =√2/4ln|(cosx-√2)/(cosx+√2)|+C

(sin2x/sinx-cosx)-(sinx+cosx/tan2x-1) =[sin2x*(sinx+cosx)]/[(sinx-cosx)(sinx+cosx)]-(sinx+cosx)/[(sin2x/cos2x)-1] =[sin2x*(sinx+cosx)]/(sin2x-cos2x)-[cos2x(sinx+cosx)]/(sin2x-cos2x) =[(sinx+cosx)(sin2x-cos2x)]/(...

sin2x+2sinxcosx+cos2x可以等于1 我们可以证明: sin2x+2sinxcosx+cos2x =(sinx+cosx)2 =【根号2sin(x+π/4)】2 =2sin2(x+π/4) 当x=kπ的时候2sin2(x+π/4)=1成立 这与sin2x+cos2x并不矛盾 因为这和x的取值有关系

变形=2sinxcosx/[cosx+(1-cos2x)/2]dx =-2cosx[cosx+(1-cos2x)/2]d(cosx) 令t=cosx

左边=cos²x+2sinxcosx+sin²x=1+2sinxcosx=1+sin2x=右边。

解: 1/sinx+1/cosx=2√2 (sinx+cosx)/(sinxcosx)=2√2 (sinx+cosx)²/(sinxcosx)²=(2√2)² (1+sin2x)=(√2sin2x)² 令sin2x=t, 则,1+t=2t² 2t²-t-1=0 (2t+1)(t-1)=0 所以, t=-1/2或t=1 所以, cos2x=±√3/2或0 sin(2...

=∫(1-2sin²x-2sinxcosx)/(cosx+sinx)dx =∫1/√2sin(x+π/4)-2sinxdx =-1/√2∫1/(1-cos²(x+π/4))dcos(x+π/4)+2cosx =-(1/2√2)ln(1+cos(x+π/4))/(1-cos(x+π/4))+2cosx+C

(sin2x/sinx-cosx)-(sinx+cosx/tan2x-1) =[sin2x*(sinx+cosx)]/[(sinx-cosx)(sinx+cosx)]-(sinx+cosx)/[(sin2x/cos2x)-1] =[sin2x*(sinx+cosx)]/(sin2x-cos2x)-[cos2x(sinx+cosx)]/(sin2x-cos2x) =[(sinx+cosx)(sin2x-cos2x)]/(...

(1+sinx)/cosx*sin2x/(2cos²(π/2-x/2) =(1+sinx)/cosx*sin2x/(2sin²(x/2)) =(1+sinx)/cosx* 2sinxcosx/(1-cosx) =(1+sinx)*2sinx/(1-cosx) =(2sinx+2sin²x)/(1-cosx)

网站首页 | 网站地图
All rights reserved Powered by www.ldcf.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com