ldcf.net
当前位置:首页 >> ∫sin^2xCos^2xDx >>

∫sin^2xCos^2xDx

∫sin^2xcos^2xdx=1/4∫(sin2x)^2dx=1/8∫(1-cos4x)dx=1/8(x-1/4sin4x)+C=x/8-(sin4x)/32+C满意请采纳,谢谢~

方法1: 原式=∫sin⁴x cos²x =∫sin⁴x (1 - sin²x) dx =∫(sin⁴x - sin^6x) dx = ∫sin⁴x dx - ∫sin^6x dx 后面的看附图,自己整理吧 方法2: 原式=∫sin⁴x cos²x dx =∫sin²x (sinxcosx)² dx...

解:∫sin^3xcos^2xdx =-∫sin^2xcos^2xdcosx =-∫(1-cos^2x)*cos^2xdcosx =-∫(cos^2x-cos^4x)dcosx =(1/5)*cos^5x-(1/3)*cos^3x

∵cos^4xsin^2x =cos^4x(1-cos²x) =cos^4x-cos^6x =[1+cos(2x)]²/4-[1+cos(2x)]³/8 =[1+2cos(2x)+cos²(2x)]/4-[1+3cos(2x)+3cos²(2x)+cos³(2x)]/8 =1/8+1/8cos(2x)-1/8cos²(2x)-1/8cos³(2x) =1/8+1/8cos...

定积分偶倍奇零 =2∫(0.π/2)sin²xcos²xdx =1/2∫sin²2xdx =1/4∫1-cos4xdx =x/4-sin4x/16 =π/8

解: ∫sin^2xcos^3xdx =∫(sinx)^2cosx(1-(sinx)^2)dx =∫(sinx)^2cosxdx-∫(sinx)^4cosxdx =∫(sinx)^2d(sinx)-∫(sinx)^4d(sinx) =(sinx)^3/3-(sinx)^5/5+C

-[cos(2x)^3]/3+cos(2x)/2+C

dy-ysin^2xdx=0 dy=ysin^2xdx dy/y=sin^2xdx dy/y=(1/2-1/2cos2x)dx d(lny)=d(x/2-1/4sin2x) lny=x/2-1/4sin2x+C1 则y=C*e^(x/2-1/4sin2x)

后面sin那一项也是在分母上吗?

网站首页 | 网站地图
All rights reserved Powered by www.ldcf.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com