ldcf.net
当前位置:首页 >> 计算x趋于0 lim(1 sinx)的x分之一的极限 >>

计算x趋于0 lim(1 sinx)的x分之一的极限

lim(1/x-1/sinx) =lim(sinx-x)/(xsinx),因为x趋向于0 sinx与x等价,对分母变化原式=lim(sinx-x)/x²,在运用洛比达法则,分子分母分别求导=lim(cosx-1)/2x=lin(-sinx)/2=0

首先利用指数函数和对数函数将其转化为 e^-lim sinxlnx limsinxlnx=im[x→0+](x^sinx) =lim[x→0+](sinxlnx) =(lim[x→0+]((sinx/x)*(xlnx)) (lim(x->0+)sinx/x=1 ) =lim[x→0+](lnx/(1/x)) =lim[x→0+]((1/x)/(-1/x^2))(洛比塔法则) =lim(x->0+)-x =...

本题如果一定要用洛必达法则,那么,先求自然对数的极限。 解: lim ln[(1+sinx)^(1/x)] x→0 =lim (1/x)ln(1+sinx) x→0 =lim ln(1+sinx)/x x→0 =lim [cosx/(1+sinx)]/1 x→0 =cos0/(1+sin0) =1/(1+0) =1 lim [(1+sinx)^(1/x)]=e¹=e x→0

答案是不是e?

首先利用指数函数和对数函数将其转化为 e^-lim sinxlnx limsinxlnx=im[x→0+](x^sinx) =lim[x→0+](sinxlnx) =(lim[x→0+]((sinx/x)*(xlnx)) (lim(x->0+)sinx/x=1 ) =lim[x→0+](lnx/(1/x)) =lim[x→0+]((1/x)/(-1/x^2))(洛比塔法则) =lim(x->0+)-x =...

极限是1/3,可以用通分做; 如果第一个分式分母是sin(x)^2,极限是1/3 如果第一个分式分母是sin(x^2),极限是0

这个==打字太慢 lim(sinx+x)/x= lim(sinx/x) +lim(x/x) 然后呢== lim(x/x)=1的你知道吧 然后呢== lim(sinx/x) 在x趋向0时是等于0的,因为x和sinx是不同阶的,你也可以用洛必塔法则求一下。 就酱紫

x趋于0求极限 lim(1/sinx-1/x) =lim(x-sinx)/(xsinx) =lim(1-cosx)/(sinx+xcosx)【罗必塔法则】 =limsinx/(cosx+cosx-xsinx) =0

lim(√(1+xsinx)-1)/xarctanx=limxsinx/xarctanx(√(1+xsinx)+1) 又若tanα=x,则可得sinα=x/√(1+x²),故arctanx=arcsin(x/√(1+x²)),再利用无穷近似值sinx=x,即lim=limsinx/(√(1+xsinx)+1)x/√(1+x²)=lim√(1+x²)/(√(...

最基础的题目了。 解析很清晰,是正确的。 高中两个重要极限的结合题。 第一个重要极限: lim sinx/x=1 x→0 第二个重要极限: lim (1+ 1/x)^x=e x→∞ lim (1+ x)^(1/x)=e x→0 第二个重要极限的前提是x→∞时,1/x→0,不满足的话,就不能用这个公式...

网站首页 | 网站地图
All rights reserved Powered by www.ldcf.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com