ldcf.net
当前位置:首页 >> 求∫sinx/(1%√sin2x)Dx >>

求∫sinx/(1%√sin2x)Dx

1-sin2x=sin^2(x)+cos^2(x)-2sinxcosx=(sinx-cosx)^2 ∫[√(1-sin2x) ]dx =∫|sinx-cosx|dx

如图所示:

如图所示:

令u=sin2x,则有sinx=u,x=arcsinu;因此:f(sin2x)=xsinx=f(u)=arcsinuu即:f(x)=arcsinxx.于是有:∫x1?xf(x)dx=

第一题,直接用万能公式法。即令u=tan(x/2)x=2arctanudx=2/(1+u^2)du,sinx=2u/(1+u^2),cos=(1-u^2)/(1+u^2)原式=∫(1+u^2)/4udu=(1/4)∫(u)^(-1)du+(1/4)∫udu=(1/4)lnu+(1/8)u^2+C=(1/4)ln[tan(x/2)]+(1/8)[tan(x/2)]^2+C第二题,原式=∫(1-sinx)/[...

∫(lntanx/sin2x)dx =∫(lntanx)/2sinxcosx)dx =½∫(lntanx)cosx/(sinxcos²x)dx =½∫(lntanx)cosx/(sinx)dtanx =½∫(lntanx)/tanx)dtanx =½∫(lntanx)d(lntanx) =¼ [ln(tanx)]² + C

sin2x=2sinxcos,原不定积分等于2cosx的不定积分等于2sinx+C

答案还是对的啊 只是打错了 你只要把第一个式子的2sin2x改成2sinx 把第二个式子的2cosx 改为cosx就OK了

网站首页 | 网站地图
All rights reserved Powered by www.ldcf.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com