ldcf.net
当前位置:首页 >> 求不定积分Dx/(2+sin*2x)Cosx >>

求不定积分Dx/(2+sin*2x)Cosx

∫ (sin²x - cos²x)/(sin⁴x + cos⁴x) dx = ∫ [- (cos²x - sin²x)]/[(sin⁴x + 2sin²xcos²x + cos⁴x) - 2sin²xcos²x] dx = ∫ (- cos2x)/[(sin²x + cos²x)² - 2sin...

其实这两种解法都是正确的 这两个结果看似不同,其他仅仅是常数的原因而已 (sinx)^2+C1 -1/2 cos2x+C2 -1/2 cos2x=sin²x-1/2 所以只要C1=-1/2 C2=0就可以了

因为sin2x = 2sinxcosx; ∫sin2xcosxdx = ∫2sinxcosxcosxdx = -2∫cosx^2dcosx = -2/3∫cosx^3

原式等于 积分号1/(Sin[x])^2 * dSin[x] -Csc[x]+C

跳过

二倍角公式恒等变换后积分 上面做法复杂化了,参考下面解法:

1.是多项式分解,学习完留数就知道分解规则了。 2.是什么什么定理的直接应用埃。【N多年没复习高数,会用,但是不知道具体定理名字,请楼下分解】

利用二倍角公式降次 cos4x=1-2sin²2x ∴sin²2x=(1-cos4x)/2 ∫ sin²2xdx =∫ (1-cos4x)/2 dx =(1/2)*(∫dx-∫cos4xdx) =(1/2)*[x-(1/4)sin4x]+C =x/2-(sin4x)/8+C C为任意常数

令u=1+cos2x 则du=-2sin2xdx 原式=-1/2·∫1/u·du =-1/2·lnu+C =-1/2·ln(1+cos2x)+C

网站首页 | 网站地图
All rights reserved Powered by www.ldcf.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com