ldcf.net
当前位置:首页 >> 求导公式大全 >>

求导公式大全

y=c(c为常数) y'=0 y=x^n y'=nx^(n-1) y=a^x y'=a^xlna y=e^x y'=e^x y=logax y'=logae/x y=lnx y'=1/x y=sinx y'=cosx y=cosx y'=-sinx y=tanx y'=1/cos^2x y=cotx y'=-1/sin^2x y=arcsinx y'=1/√1-x^2 y=arccosx y'=-1/√1-x^2 y=arctanx y'=1/...

基本初等函数导数公式主要有以下 y=f(x)=c (c为常数),则f'(x)=0 f(x)=x^n (n不等于0) f'(x)=nx^(n-1) (x^n表示x的n次方) f(x)=sinx f'(x)=cosx f(x)=cosx f'(x)=-sinx f(x)=a^x f'(x)=a^xlna(a>0且a不等于1,x>0) f(x)=e^x f'(x)=e^x f(x)=logaX ...

-1/x² 【过程】 y=x^n则 y'=nx^(n-1)这里y=x^(-1)所以y'=-1*x^(-1-1)=-1/x² 【求导是什么】 求导是数学计算中的一个计算方法,它的定义就是,当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。 在一个函数存在导数时,...

常用导数公式表如下: c'=0(c为常数) (x^a)'=ax^(a-1),a为常数且a≠0 (a^x)'=a^xlna (e^x)'=e^x (logax)'=1/(xlna),a>0且 a≠1 (lnx)'=1/x (sinx)'=cosx (cosx)'=-sinx (tanx)'=(secx)^2 (secx)'=secxtanx (cotx)'=-(cscx)^2 (cscx)'=-csxcotx (a...

分数求导,结果为0 分式求导: 结果的分子=原式的分子求导乘以原式的分母-原式的分母求导乘以原式的分子 结果的分母=原式的分母的平方。 即:对于U/V,有(U/V)'=(U'V-UV')/(V^2)

(sinx)' = cosx (cosx)' = - sinx (tanx)'=1/(cosx)^2=(secx)^2=1+(tanx)^2 -(cotx)'=1/(sinx)^2=(cscx)^2=1+(cotx)^2 (secx)'=tanx·secx (cscx)'=-cotx·cscx (arcsinx)'=1/(1-x^2)^1/2 (arccosx)'=-1/(1-x^2)^1/2 (arctanx)'=1/(1+x^2) (arccot...

常见的层数公式有: 1.y=c(c为常数) y'=0 2.y=x^n y'=nx^(n-1) 3.y=a^x y'=a^xlna y=e^x y'=e^x 4.y=logax y'=logae/x y=lnx y'=1/x 5.y=sinx y'=cosx 6.y=cosx y'=-sinx 7.y=tanx y'=1/cos^2x 8.y=cotx y'=-1/sin^2x 9.y=arcsinx y'=1/√1-x^2 1...

基本初等函数的导数公式: 1 .C'=0(C为常数); 2 .(Xn)'=nX(n-1) (n∈Q); 3 .(sinX)'=cosX; 4 .(cosX)'=-sinX; 5 .(aX)'=aXIna (ln为自然对数) 特别地,(ex)'=ex 6 .(logaX)'=(1/X)logae=1/(Xlna) (a>0,且a≠1) 特别地,(ln x)'=1/x 7 .(tan...

基本函数的导函数 C'=0(C为常数) (x^n)'=nx^(n-1) (n∈R) (sinx)'=cosx (cosx)'=-sinx (e^x)'=e^x (a^x)'=(a^x)*lna(a>0且a≠1) [logax)]' = 1/(x·lna)(a>0且a≠1且x>0) [lnx]'= 1/x 和差积商函数的导函数 [f(x) + g(x)]' = f'(x) + g'(x) [f(x) ...

这是同济第5版高数上的,与6版应该一样吧

网站首页 | 网站地图
All rights reserved Powered by www.ldcf.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com