ldcf.net
当前位置:首页 >> 求积分1/(2+Cosx)sinx >>

求积分1/(2+Cosx)sinx

这里给出的是拆分的方法... 用到cscx和cotx的原函数公式 请见下图

希望能帮助你

就是符号错了,分项积分后,第二个积分式前面应该是负号

见图片。

1+cosx=2cos²(x/2) sinx=2sin(x/2)cos(x/2) 所以 ∫(1+cosx)^(1/2) / sinx dx=根号(2)/2 ∫ |cos(x/2)|/【sin(x/2)cos(x/2)】 dx 得看cos(x/2)是正数还是负数 若cos(x/2)>0 元积分=根号(2) ∫ csc(x/2)d(x/2) =根号(2) ln|csc(x) - ctan(x)|+C...

∫(2+cosx)/[cosx(1+sinx)] dx =∫(2+cosx)(1-sinx)/(cosx)^3 dx =∫ (2- 2sinx+cosx - sinxcosx) /(cosx)^3 dx =2∫ (secx)^3 dx - 2∫ sinx/(cosx)^3 dx +∫ (secx)^2 dx - ∫ sinx/(cosx)^2 dx =2∫ (secx)^3 dx - [1/(cosx)^2] +tanx -(1/cosx) ...

解:分享一种解法。∵1/(cosx+sinx)=(1/√2)/cos(x-π/4)=sec(x-π/4)/√2, ∴∫dx/(cosx+sinx)=(1/√2)∫sec(x-π/4)dx=(1/√2)ln丨sec(x-π/4)+tan(x-π/4)丨+C。供参考。

设一个u=tanx/2,dx=2/(1+u^2)然后可以用万能公式把cosx和sinx全部代成u的式子.做三角的不定积分,我现在都这样代,可以方便不少的。和你的答案是一样的。

你的思路并没有错,实际上你应该注意到我们求出的不定积分是一个积分簇,如果我来解的话,我得到的结果是这样的:Integrate[1/(sinx+cosx)^2,x]=Integrate[1/(tanx+1)^2,tanx]=-1/(1+tanx)+C=-cosx/(sinx+cosx)+C=sinx/(sinx+cosx)+C-1=1/2*(sinx-co...

这什么啊,乱七八糟的,再牛的人也没办法根据答案来猜题目。

网站首页 | 网站地图
All rights reserved Powered by www.ldcf.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com