ldcf.net
ǰλãҳ >> ΪʲôCos(%x)=Cosx >>

ΪʲôCos(%x)=Cosx

һλ԰ ǣһxһ-x Կcosx=OA/R //: ҺĶ cos(-x)=OA/R ˣ cos(-x) = cosx ͼ

Ϊy=cosxż cos(-x)cosx

ȻλԲ cosֵļ

Ϊڵ1͵4cosǵķŶһġ

¥cos[cos(cosx)]sin[cos(cosx)]Ǵģ Ҫ֤һ󣬽ٳһɡ žһ x=1()ʱУ cosx=cos10.54030231 cos(cosx)=cos(cos1)0.85755322 sin[cos(cosx)]=sin[cos(cos1)]0.756243...

Ͳʽ Уa=x+hb=x

cos2xcos3x =cos3xcos2x =(1/2){cos(3x+2x)+cos(3x-2x)} =1/2(cos5x+cosx)

ش Ͳʽ3coscos=1/2[cos+£+cos£] 2coscos=cos+£+cos£ =2 x= xʱʽã 2cos2xcosx= cos3x+ cosx2cos2xcosx=cosx+cos3x

Ϊcos(x+h)-cosx=-2sin(x+h/2)sin(h/2) :lim [cos(x+h)-cosx]/h =lim[-2sin(x+h/2)sin(h/2)/h] =lim[-sin(x+h/2)sin(h/2)/(h/2)] =lim[-sin(x+h/2)] =-sinx

arccos֪cos=x arccosx=֮cos=cos(arccosx)=x 😊😊😊😊😊😊😊😊😊😊😊

վҳ | վͼ
All rights reserved Powered by www.ldcf.net
copyright ©right 2010-2021
磬ַϵͷzhit325@qq.com