ldcf.net
当前位置:首页 >> 用分部积分法求∫(1,0)ArCtAnxDx >>

用分部积分法求∫(1,0)ArCtAnxDx

原式= x arctan√x - ∫x d (arctan√x) 令t=√x,则 ∫x d (arctan√x) = ∫ t^2 d (arctant) = ∫ t^2 / (1+ t^2) dt = ∫ (t^2+1-1) / (1+ t^2) dt = ∫ 1 dt - ∫ 1 / (1+ t^2) dt = t - arctan t + C 将t=√x带入 = √x - arctan√x +C 所以原式= x arcta...

您好,答案如图所示:

网站首页 | 网站地图
All rights reserved Powered by www.ldcf.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com