ldcf.net
当前位置:首页 >> 1/xsinx的不定积分 >>

1/xsinx的不定积分

∫1/sinx dx =∫1/[2sin(x/2)cos(x/2)] dx,两倍角公式 =∫1/[sin(x/2)cos(x/2)] d(x/2) =∫1/tan(x/2)*sec²(x/2) d(x/2) =∫1/tan(x/2) d[tan(x/2)], [注∫sec²(x/2)d(x/2)=tan(x/2)+C] =ln|tan(x/2)|+C, (答案一) 进一步化简: =ln|sin(x/2...

这个函数的不定积分是无法用初等函数来表示的,也就是俗称的“积不出”

您好,很高兴为你回答!! 用分部积分法 望采纳

∫[1/(1+sinx)]dx =2∫{1/[sin(x/2)+cos(x/2)]^2}d(x/2) =2∫{1/[tan(x/2)+1]}^2{1/[cos(x/2)]^2}d(x/2) =2∫{1/[tan(x/2)+1]}^2[tan(x/2)+1] =-2/[1+tan(x/2)]+C

我还是之前回答你的那个,这是我给你翻的我书上的证明,如果你懂傅里叶积分的话应该能看懂,第一页下半部分是一个更广义的结论的证明,第二页代入x=0得出结论。

你得拿具体的题

1/[(e^x)-x]的不定积分 本积分的原函数不是初等函数,所以 本积分不可积。

解:分享一种解法。∵1/(cosx+sinx)=(1/√2)/cos(x-π/4)=sec(x-π/4)/√2, ∴∫dx/(cosx+sinx)=(1/√2)∫sec(x-π/4)dx=(1/√2)ln丨sec(x-π/4)+tan(x-π/4)丨+C。供参考。

令u = tan(x / 2),dx = 2du / (1+u²) sinx = 2u / (1+u²),cosx = (1 - u²) / (1 + u²) ∫ dx / (sinx + cosx) = ∫ 2 / 【(1 + u²) * [2u / (1+u²) + (1 - u²) / (1 + u²)]】 du = 2∫ du / (-u² + 2...

网站首页 | 网站地图
All rights reserved Powered by www.ldcf.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com