ldcf.net
当前位置:首页 >> 1/(3+(sinx)^2)的积分?谢谢 >>

1/(3+(sinx)^2)的积分?谢谢

(sinx)^2=1-(cosx)^2=(tanx)^2/(1+(tanx)^2) 原式=∫(1+(tanx)^2)dx/(3+4(tanx)^2) =(1/3)∫(secx)^2dx/(1+((2/√3)tanx)^2) =(1/3)*(√3/2)∫d((2/√3)tanx)/(1+((2/√3)tanx)^2) 设t=(2/√3)tanx 原式=(√3/6)∫dt/(1+t^2) =(√3/6)arctan(t) =(√3/6)arct...

若有疑问,请追问; 若满意,请采纳。 谢谢。

令x=2u,则:u=x/2,dx=2du。 ∴∫{1/[3+(sinx)^2]}dx =2∫{1/[3+(sin2u)^2]}du =2∫{1/[3(cosu)^4+3(sinu)^4+10(sinu)^2(cosu)^2]}du =2∫{1/[(3cos^2u+sin^2u)(cos^2u+3sin^2u)]}du =(1/2)∫{1/[3...

∫(-1 1)(x^2sinx^3+√(1-x^2))dx =∫(-1 1)x^2sinx^3dx+∫(-1 1)√(1-x^2)dx =A+B A中被积函数为奇函数,积分区间为对称区间,根据奇函数在对称区间的积分为0,所以A=0 B表示单位圆上半圆的面积 所以B=π/2 所以结果为π/2

令f(x)=(sinx)^3 /(1+x^2) 显然f(-x)= (sin-x)^3/(1+x^2)= -(sinx)^3/(1+x^2) 所以f(x)+f(-x)=0 即f(x)为奇函数, 那么积分之后得到∫ f(x) dx是偶函数, 即F(x)= F(-x) 所以代入互为相反数的上下限2和 -2 得到原积分=F(2) -F(-2)=0 故定积分值为0

令t=tan(x/2),则x=2arctant,所以dx=2/(1+t^2)dt 由万能公式:sinx=2tan(x/2)/(1+(tan(x/2))^2)=2t/(1+t^2), 则原式=(1/2)∫d(t+1/2)/[(t+1/2)^2+(根号3/2)^2] =(1/根号3)arctan[2(t+1/2)/根号3]+C =(1/根号3)arctan[2(arctan(x/2)+1/2)/根号3]+C

要用到分部积分。 因为∫(sinx)^3dx=∫((cosx)^2-1)dcosx=(cosx)^3/3-cosx 所以 ∫x(sinx)^3dx=∫xd[(cosx)^3/3-cosx] =x[(cosx)^3/3-cosx]-∫[(cosx)^3/3-cosx]dx =x[(cosx)^3/3-cosx]+sinx -(1/3)∫(cosx)^3dx =x[(cosx)^3/3-cosx]+sinx -(1/3)∫[1-(...

因为奇函数在对称区间的积分为0,很明显lxlsinx是奇函数,lxlx^3也是奇函数 所以这两个积分都为0 所以原式=∫(-1,1)2lxldx=4∫(0,1)xdx=2

网站首页 | 网站地图
All rights reserved Powered by www.ldcf.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com