ldcf.net
当前位置:首页 >> x趋近于0,求(tAnx+sinx)/x的极限 >>

x趋近于0,求(tAnx+sinx)/x的极限

分母一阶,分子只需要展开到一阶就好了,也就是可以拆开,等价无穷小,=1+1=2

lim(x趋向于0+)x^tanx =e^lim(x趋向于0+)lnx^tanx =e^lim(x趋向于0+)lnx*tanx =e^lim(x趋向于0+)lnx/cotx (∞/∞) =e^lim(x趋向于0+)(1/x)/(-csc^2x) =e^lim(x趋向于0+)-sinx =e^0 =1

x-sinx~x³/6 x+tanx~x³/3

用洛必达法则对分子分母上下求导 原式 =lim(1-secx)/(2xsinx+x^2*cosx) =lim(-2sinx/cos^3x)/(2sinx+2xcosx+2xcosx-x^2sinx) =lim(-2-4sin^2x/cos^4x)/(2cosx+4cosx-4xsinx-2xsinx-x^2cosx) =-1/3 实在无语,相似度有那么高吗,不就是答案一样吗

(e^tanx-e^sinx)/x³ =(e^tanx-e^sinx)/(tanx-sinx)*(tanx-sinx)/x³ 而(e^tanx-e^sinx)/(tanx-sinx)=e^ξ,ξ在sinx与tanx之间 所以原式=e^ξ*(tanx-sinx)/x³ 当x→0时,ξ→0,利用等价替换tanx-sinx~x³/2可知原式=e^0*1/2=1/2

分子加减不能拆开运算。 这题x可以用等价无穷小sinx替换就可以了,这里可以提取sinx

洛必达法则

原式=limx→0 [tanx-tan(sinx)]/x^3*limx→0 sinx/x*limx→0 x/arctanx =limx→0 [1/cos^2x-cosx/cos^2(sinx)]/3x^2*1*1 =limx→0 [cos^2(sinx)-cos^3x]/3x^2*limx→0 1/[cos^2x*cos^2(sinx)] =limx→0 [-2cos(sinx)sin(sinx)cosx+3cos^2xsinx]/6x*1 =l...

解:当u->0时 ,(1+u)^(1/u) -> e 当x->π/2 时,令 u = sinx-1,u->0 (sinx) ^ (tanx) = (1+ sinx-1) ^ (tanx) = (1+u) ^ {(1/u) * u * tanx } lim(x->π/2) u * tanx 令 t = π/2 -x = lim(t->0) (cost - 1)/ tant = lim(t->0) (cost - 1)/ t = 0 故...

代换不能在乘除中用

网站首页 | 网站地图
All rights reserved Powered by www.ldcf.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com